Identifying Machine-Paraphrased Plagiarism

Jan Philip Wahle
Terry Ruas
Tomáš Foltýnek
Norman Meuschke
Bela Gipp



Employing paraphrasing tools to conceal plagiarized text is a severe threat to academic integrity. To enable the detection of machine-paraphrased text, we evaluate the effectiveness of five pre-trained word embedding models combined with machine-learning classifiers and state-of-the-art neural language models. We analyze preprints of research papers, graduation theses, and Wikipedia articles, which we paraphrased using different configurations of the tools SpinBot and SpinnerChief. The best-performing technique, Longformer, achieved an average F1 score of 80.99% (F1 = 99.68% for SpinBot and F1 = 71.64% for SpinnerChief cases), while human evaluators achieved F1 = 78.4% for SpinBot and F1 = 65.6% for SpinnerChief cases. We show that the automated classification alleviates shortcomings of widely-used text-matching systems, such as Turnitin and PlagScan.

Some More Cool NLP & AI Research Publications